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A method is developed for solving an inverse problem on the determination of 
thermomechanical parameters of a material that undergoes phase transformations 
in the process of hardening. The dependence of the error of determination of 
parameters on the error admissible in direct measurements of physical fields 
is established. 

i. The use of mathematical simulation of the processes of structurization in metals 
and alloys during thermal treatment as an instrument of optimization of the complex of control- 
ling paramters is finding ever-increasing use. An application of an ideal mathematical 
model is related to completeness of information on physical properties of the material. How- 
ever, the possibilities of an experimental determination of thermophysical and mechanical 
properties available are limited as present, especially because structure in steels in thermal 
processing forms under stresses that considerably affect the distribution of structural com- 
ponents and, consequently, the ultimate properties of the material. Therefore, solving in- 
verse problems, such as interpreting the data of a physical experiment [1-3], is an effective 
technique for obtaining information on thermophysical and mechanical parameters. Since prob- 
lems of this class are "incorrect" problems, regularizing algorithms are used for their solu- 
tion [4]. 

Since any physical experiment is related to measurement errors, the estimate of the 
influence of these errors on the quality of the solutions obtained and also on the accuracy 
of determination of one or another parameter seems to be very important. The determination 
of this kind of estimate and, correspondingly, the solution of the problem on planning an 
experiment on measurement of physical fields as input data of the inverse problem under con- 
sideration constitute the purpose of the present work. 

2. The model of thermal treatment that we accepted is related to inductive heating of 
steel cylindrical samples for hardening [5]. Thermomechanical effects are considered on 
the basis of the theory of plastic flow [6], where the corresponding solution includes both 
thermal and structural components of the stress tensor. The latter is significant since 
the model contains both the estimates of the inverse effect of stresses on structural trans- 
formations and the effect of structure on the thermal field T. 

Therefore, the physical process is described by an initial-value boundary-value problem 
for a self-adjoint evolving system of partial differential equations that includes a non- 
linear equation of heat conduction with conditions of convective heat exchange and radiation 
on the boundary of a cylinder with the Maxwell equations in a quasistationary approximation 
(in the stage of inductive heating) and nonlinear equations for calculating the field of 
stresses and deformations. 

The effect of stresses on a thermal field in the process of hardening is considered 
with the help of the following expression for the speed of the latent heat liberation for 
a phase transformation: 

i 

where i is the corresponding phase transition number, qi is the latent heat of transition, 
and $i is the partial volume of the i-th phase. 
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Accordingly, the system is closed by integral representations for the volumetric parts 
of different crystal phases that are formed in the process of rapid cooling. In the given 
work, the process of the complete decomposition of austenite $3 into perlite 6~ and marten- 
site 62 is considered: 

145 ' 

~2 = ( 1  - -  ~1){ 1 - -  exp [ r  (300 - -  T) § A~ + B~J} ,  

I n  t h i s  c a s e ,  6a i s  c a l c u l a t e d  o n l y  in  t h e  t e m p e r a t u r e  r a n g e  380~ ~ T ~ 720~ f o r  T > 720~ 
we have  61 = 0, and t h e  f o r m a t i o n  o f  t h e  p e r l i t e  s t r u c t u r e  i s  t e r m i n a t e d  f o r  T < 380~ The 
s i t u a t i o n  i s  s i m i l a r  f o r  g2 i n  t h e  t e m p e r a t u r e  r a n g e  100~ ~ T ~ 300~  In  t h e s e  e q u a t i o n s  
K, p,  ~, A, and B a r e  c o n s t a n t s  d e t e r m i n e d  by t h e  s t e e l  g r a d e ;  S a r e  t h e  a v e r a g e  s t r e s s e s ,  

S = 1/3  t r  o i j ;  o i a r e  t h e  s t r e s s  i n t e n s i t i e s ;  T i s  t h e  t e m p e r a t u r e  f i e l d ;  and t o i s  t h e  

i n i t i a l  moment o f  h a r d e n i n g .  

These  e q u a t i o n s  r e f l e c t  t h e  J o n e s - N e l l  h y p o t h e s i s  [7, 8] w i t h  t h e  a d j u s t m e n t  on n o n i s o -  
t h e r m a l i t y  o f  t h e  p r o c e s s  o f  d e c o m p o s i t i o n  o f  a u s t e n i t e  and w i t h  a c c o u n t  o f  t h e  e f f e c t  o f  
s t r e s s e s  on d e c o m p o s i t i o n  u n d e r  c e r t a i n  s i m p l i f y i n g  a s s u m p t i o n s .  

The d e s c r i b e d  s y s t e m  o f  e q u a t i o n s ,  s o l v a b l e  by an i t e r a t i o n a l  d i f f e r e n c e  method s i m i l a r  
t o  [5 ,  9] s e r v e s  as  a b a s i s  f o r  t h e  p r o g r a m - s e n s o r  o f  t h r e e  p h y s i c a l  f i e l d s :  a t e m p e r a t u r e  
f i e l d ,  a s t r e s s  and d e f o r m a t i o n  f i e l d ,  and a d i s t r i b u t i o n  f i e l d  f o r  t h e  s t r u c t u r a l  compon- 
e n t s .  These fields, therefore, are algorithmically defined on a spatial-temporal mesh for 
any set of physical parameters of the material and process. 

Let us refer to the description of these parameters. 

3. When cooling is rapid, we can neglect the dependence of the thermophysical parameters 
on temperature [5]. On the other hand, there is evidence that in the framework of a model 
exhibiting mutual interaction of physical fields, it is necessary to distinguish between 
the phenomenological characteristics of crystalline phases [8]. In connection with this, 
we are interested in the following parameters: the heat conduction of each phase li(T), the 
volumetric expansion coefficient ~i(T), and the parameter p responsible for the formation of 
the perlite structure from the inner stresses in the sample. 

We note that since the microstructure of the material is not ordered, parameters of 
the mixture that enter intoequations of heat conduction and thermoelastoplasticity at each 
moment t and at each point of the sample r are described by the equations 

i i 

(the representations ~i are given above). In our mathematical model 11, 42, ~i, and ~2 do 
not depend on temperature: 13(T) and ~(T) are linear functions of temperature, the values 
of which at one of the points (for example, for T = 850~ are known from the reference lit- 
erature [i0], so that these functions are defined uniquely by the values (for example, for 

T = 20~ of 13 and ~. 

Therefore, the desired vector is the vector P = {11, 12, I~, ~1, ~2, ~3}, the values 
of which we choose from the compact set defined by the information on maximal and minimal 

values of the parameters for the given steel grade [8, i'I]: ~ ~ I i ~ I, ~ ~ ~i ~ ~, P ~ 

p ~ ~ (i = I, 3). Below, we denote the indicated set as ~p. 

4. By means of a physical experiment related to the specific technology of cooling 
of a sample on the given spatial--temporal mesh, the fields Te(r i, tj) can be obtained in the 

course of the process, and the values of o88e(ri, tj), 61 e (r i, tj) at the moment of its 

completion t. They can serve as indirect information for determining P so that the devia- 
tion of the "calculated" field from the experimental field is a minimum. 

Since P is selected from the compactum ~R" such a problem corresponds to the concept of 
quasisolution [4], where the closure measure ~or the observed and. calculated values is 
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determined in a certain compact space. However, since the sensitivity of the deviations 
of different fields to different parameters is different, it is convenient to elaborate on 
the problem formulation and at the same time to define an effective algorithm for solving 
the problem. 

We introduce the functionals 

[pl = ! i w t r  p) - -  
0 io 

I 
R 

% [P] = .i [w I%o (r, }, p) - -  c~go (r, ~)I ~ + w I~ (r, 7, p) - -  ~ (r, })ll dr, 
0 

where ~l, ~2, and ~3 are weighted factors introduced taking account of the difference in 
the dimensionality of functionals (Yi = I/l~il, i = i, 3); R is the sample radius. 

As a minimizing algorithm, an iterative method of quickest descent has been chosen on 
different groups of parameters for different functionals. It consists of two stages. At 
the first stage the set is constructed on which the functional ~ = ~l + ~2 has a unique min- 
imum, coinciding with the global minimum. In order to do this, a certain sequence of values 

is specified: {Pk} c [p, p]. For each of these Pk for the given initial value of q(O) = 

{Xl (~ X2 (~ 13 (~ ~i (~ a2(~ , ~3(~ an iteration process is realized, which is complet- 
ed when the following conditions hold: 

~{s) ~, {.s.- 111 ~{~--!)I 
~.o~ - . ~  < lo-~ - ~  , ,  I~l ~ - - ~ - ~ 1 <  lo-~t~I~-~1; 

we denote the result of this process by qh. 

Each step of this process includes two variational procedures: from the given e(s-1) = 

{~i(s-i), ~2(s-i), %(s-i)} by minimization of ~i with respect to I, we obtain I(s) = {11(s), 

12(s), i2(s)}; with respect to i(s) by minimization of ~2 we obtain ~(s) 

As a result of the interation process, a set of minimal values of {~(k)} is obtained, 
from which we select 

and the corresponding 

c> _--_ rain ~(k) 
k 

Pho = {qho, Pho}" 

As the desired set, which contains the global minimum point, the segment [Pk-l, Pk+1], 

which replaces the given set [p, p], is taken. The determined value of ph~ is assumed to 
be an initial approximation for the algorithm of the next stage. 

At the second stage, the purpose of which is solving the following problem of quasi- 
minimization for the given "allowances" 61 and 62: 

in the neighborhood of the global minimum, the following iteration process is realized: From 

1 (j-l) = {11(J-i), 12(J -l), 13(J -l)} by minimization of ~2 with respect to {~l, ~2, ~3, P} 

the quant{ty r (j) = {~1(j), ~2(j), ~a(j), p(j)}, is determined; from the r (J) determined 

by minimization of ~i with respect to the set {11, 12, la} - l(J). The process is completed 
under the same condition as above. 

For the case when the condition of quasiminimization does not hold, the process is repeat- 
ed, however, on a smaller mesh with respect to p. The results, given below, prove that such 
an algorithm is effective. 

5. We direct our attention to the results of a numerical experiment. 

Initially, as "experimental" data, the physical fields {T, 088 , $l} were considered, 
calculated in advance from the given P0 with computer accuracy. From these fields the value 
of P was reconstructed with accuracy up to 0.1%, which demonstrates clearly the efficiency 
of the selected algorithm. 
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Fig. i. Dependence of the relative error in determination 
of the temperature 6 T on the relative error of parameters 
I (a), e (b), p (c) for 65 = 0%, 6o = 0%: I) perlite; 2) 
martensite; 3) austenite. 6T, 61, 6p, %. 

Next, we were interested in the dependence of an error of the results obtained on the 
error of measurement of physical fields. Since the inverse problem is incorrect, the a pri- 
ori estimates of this error are impossible, and, therefore, the a posteriori estimates, ob- 
tained on the basis of a special mathematical experiment [i, 4], serve as their alternative. 
For this purpose we use perturbated simulating fields, where the relative error at the level 
6 (%) is simulated by the following equations: 

Te T( I  + 10-z6~), e = ~00= % 0 ( 1 ~  lO.-Z5o), ~ .... ~1( l !  10-25~). 

Then f rom t h e  f i e l d s  p e r t u r b a t e d  in  t h i s  way, we r e c o n s t r u c t e d  t h e  p a r a m e t e r  P ( p r e s e r v i n g  
s t a b i l i t y  due t o  t h e  c o r r e c t n e s s  o f  our  p ro b l em  f o r m u l a t i o n ) ,  and i t s  v a l u e  was compared 
to the initial one. The deviation of P from the initial P0 is estimated from the rela- 
tive deviation of each vector component 

6p~(%)-- IP~--Po~I 100% 
IPoil 

and serves as a measure of the error of the result. 

The data obtained can serve as an important factor for planning experimental measure- 
ments. Hence it follows that: 

i. The most substantial effect on the determination of parameters of heat conduction 
I i is produced by the error in the measurement of the thermal field. The surpassing of the 
relative error in the determination of this field by more than 1% results in a more than 
10% error in the determination of I i (Fig. la), while an error in the determination of the 
structural field of up to 10% and an error in the stress field of up to 20% (Figs. 2a and 
3a) produce a weak effect on the relative error in the determination of I i, less than 1%. 

2. The use of the information on distribution of the structural field in the determina- 
tion of parameters {I i, ~i, P} leads to the result that the measurement of the stress field 
with a relative error up to 20% allows us to determine parameters with relative error up 
to 3% (Fig. 2). This is an interesting result since an experimental determination of stresses 
with relative error lower than 10-15% requires local destructive methods and bulky statistical 

processing of experimental data. 

3. The error in the measurement of the structural field influences noticeably an error 
in the determination of the parameters (Fig. 3). Since the experimental determination of 
the structural component with the relative error below 5% requires considerable time expenses 
and the use of expensive equipment, in practice, the main goal should be determined and the 
labor involved in the experiment to achieve this goal should be minimized, or a compromise 
should be sought between the computational and experimental work. In Fig. 3, the results 
are represented closest to the possibilities of the contemporary experimental base {6 T = 
0.5%, 60 = 10%} that allow us to judge on the influence of 66 on the accuracy of the deter- 

mination of parameters. 

944 



2O 

10 

5 

Fig. 2. 

a 

/ 
f 

I 

b 

/ 
/ 

2 5'o~ o 

J 

F I 

i 

C 

/ 

Dependence of the relative error in determination 
of stresses 60 on the relative error of the parameters X (a), 

(b), p (c) for 8T = 0%, 65 = 3%: i) perlite; 2) martensite; 
3) austenite. 6o, %. 
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Fig. 3. Dependence of the relative error in the determina- 
tion of the structural component 8E on the relative error of 
the parameters ~ (a), a (b), p (c)-for 6 T = 0.5%, 6 o = 10%: 
i) perlite; 2) martensite; 3) austenite. 

Therefore, these investigations work out the strategy of conducting a physical experi- 
ment on the measurement of the group of values: T, o88 , $i and can serve as a basis for 
the automated system of determination of physical parameters of structural components for 
the given grades of steel with the influence of the stress field and structural transforma- 
tions clearly defined. 

In the framework of the described methodology one can use an even more complete model 
of structural transformations. Also other (including functional) parameters of the material 
or process can be the goal of the search. 
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CONTROLLED RATIONAL HEATING OF OBJECTS FOR HEAT TREATMENT 

E. T. Bruk-Levinson, M. L. German, M. A. Geller, 
and G. V. Gritskevich 
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The article presents a method of solving the problem of controlled heating 
involving the reproduction of some regularity of heating the surface of an 
object. As an example the article presents the solution of the problem of 
controlled radiative heating of a steel cylinder, and the obtained calcula- 
tion is compared with experimental data. 

The heating of steel is a widely used operation in processes of heat treatment such 
as annealing, tempering, normalization, and hardening. The quality and conditions of heat- 
ing largely determine the subsequent properties of parts subjected to heat treatment. The 
heating temperature of different marques of steel lies in a wide range from 20 to 1300~ 
and heating itself is carried out at different rates. Different heat sources are therefore 
used: electrical, radiative, plasma, lasers, electron beams. As a rule, a certain power 
is established which is used during the entire heating process. The heating rate is not 
varied in different temperature ranges, and power expenditure on heating is not being opti- 
mized. Yet in some cases it is necessary to ensure a variable heating rate at different 
stages of heating. This can be done by controlling the intensity of the supplied power en- 
suring the required temperature regime. 

In the general case the problem of external heating can be formulated in the following 
way: we have to heat some object in such a way that its surface is heated according to the 
previously specified regularity T s = f(T). For that we have to find such a dependence Tso = 

Tso(T) , that the regularity T s = f(~) is fulfilled. 

In this case the equation of heat conduction has the form [i] 

aT 
cp (Y) p (T) -- div (~ (T) grad T) ( 1 ) 

0~ 

with the boundary condition on the surface 

0T 
~ (T) a~i ~ (g~ (2)  

where n is the outer normal to the surface of the object; ~ is some function whose form 
depends on the method of heating. It can be seen from the boundary condition (2) that if 
the function ~(Tso) has an inverse, and we know the dependence of 8T/Sn on time, we can 
find the temperature of the source 
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